
Function reference
-
BaselearnerCategoricalBinary - Base learner to encode one single class of a categorical feature
-
BaselearnerCategoricalRidge - One-hot encoded base learner for a categorical feature
-
BaselearnerCentered - Centering a base learner by another one
-
BaselearnerCustom - Custom base learner using
Rfunctions.
-
BaselearnerPSpline - Non-parametric B or P-spline base learner
-
BaselearnerPolynomial - Polynomial base learner
-
BaselearnerTensor - Row-wise tensor product base learner
-
BlearnerFactoryList - Base learner factory list to define the set of base learners
-
CategoricalDataRaw - Data class for categorical variables
-
Compboost - Component-wise boosting
-
Compboost_internal - Internal Compboost Class
-
InMemoryData - Store data in RAM
-
LearnerClassifCompboost - Component-wise gradient boosting classification learner
-
LearnerCompboost - Component-wise gradient boosting learner
-
LearnerRegrCompboost - Component-wise gradient boosting regression learner
-
LoggerInbagRisk - Log the train risk.
-
LoggerIteration - Logger class to log the current iteration
-
LoggerList - Collect loggers
-
LoggerOobRisk - Log the validation/test/out-of-bag risk
-
LoggerTime - Log the runtime
-
LossAbsolute - Absolute loss for regression tasks.
-
LossBinomial - 0-1 Loss for binary classification derived of the binomial distribution
-
LossCustom - Create LossCustom by using R functions.
-
LossHuber - Huber loss for regression tasks.
-
LossQuadratic - Quadratic loss for regression tasks.
-
LossQuantile - Quantile loss for regression tasks.
-
OptimizerAGBM - Nesterovs momentum
-
OptimizerCoordinateDescent - Coordinate descent
-
OptimizerCoordinateDescentLineSearch - Coordinate descent with line search
-
OptimizerCosineAnnealing - Coordinate descent with cosine annealing
-
ResponseBinaryClassif - Create response object for binary classification.
-
ResponseRegr - Create response object for regression.
-
boostComponents() - Wrapper to boost general additive models using components
-
boostLinear() - Wrapper to boost linear models for each feature.
-
boostSplines() - Wrapper to boost general additive models for each feature.
-
getCustomCppExample() - Get C++ example script to define a custom cpp logger
-
plotBaselearner() - Visualize contribution of one base learner
-
plotBaselearnerTraces() - Visualize base learner traces
-
plotFeatureImportance() - Visualize the feature importance
-
plotIndividualContribution() - Decompose the predicted value based on the given features
-
plotPEUni() - Visualize partial effect of a feature
-
plotRisk() - Visualize the risk
-
plotTensor() - Visualize bivariate tensor products