LossCustom creates a custom loss by using
Rcpp::Function to set R functions.
Format
S4 object.
Arguments
- lossFun
(
function)Rfunction to calculate the loss.- gradientFun
(
function)Rfunction to calculate the gradient.- initFun
(
function)Rfunction to calculate the constant initialization.
Usage
LossCustom$new(lossFun, gradientFun, initFun)Inherited methods from Loss
$loss():matrix(), matrix() -> matrix()$gradient():matrix(), matrix() -> matrix()$constInit():matrix() -> matrix()$calculatePseudoResiduals():matrix(), matrix() -> matrix()$getLossType():() -> character(1)
Details
The functions must have the following structure:
lossFun(truth, prediction) { ... return (loss) } With a vector
argument truth containing the real values and a vector of
predictions prediction. The function must return a vector
containing the loss for each component.
gradientFun(truth, prediction) { ... return (grad) } With a vector
argument truth containing the real values and a vector of
predictions prediction. The function must return a vector
containing the gradient of the loss for each component.
initFun(truth) { ... return (init) } With a vector
argument truth containing the real values. The function must
return a numeric value containing the offset for the constant
initialization.
Examples
# Loss function:
myLoss = function (true_values, prediction) {
return (0.5 * (true_values - prediction)^2)
}
# Gradient of loss function:
myGradient = function (true_values, prediction) {
return (prediction - true_values)
}
# Constant initialization:
myConstInit = function (true_values) {
return (mean(true_values))
}
# Create new custom quadratic loss:
my_loss = LossCustom$new(myLoss, myGradient, myConstInit)
